Abstract
Orbital motion of azimuth waves imposes differential Doppler shifts on wave imagery as seen by a SAR. This paper shows that these Doppler shifts are a function only of the wave and sensor geometry, and are not a function of SAR parameters. The azimuth wave reflectivity so modulated is equivalent to a redistributed scatterer density which can be used as an input with the SAR modulation transfer function for general distributed scenes to derive the azimuth wave image. The static scatterer density is calculated for a variety of sea states. Wave accelerations are not of first-order importance. Scatterer fade (decorrelation) is of central importance, as it impacts the SAR transfer function that is effective in wave imaging.

This publication has 12 references indexed in Scilit: