Validity of the rigid band picture for the t-J model

Abstract
We present an exact diagonalization study of the doping dependence of the single particle Green's function in 16, 18 and 20 site clusters of t-J model. We find evidence for rigid-band behaviour starting from the half-filled case: upon doping, the topmost states of the quasiparticle band observed in the photoemisson spectrum at half-filling cross the chemical potential and reappear as the lowermost states of the inverse photoemission spectrum. Features in the inverse photoemission spectra which are inconsistent with rigid-band behaviour are shown to originate from the nontrivial point group symmetry of the ground state with two holes, which enforces different selection rules than at half-filling. Deviations from rigid band behaviour which lead to the formation of the `large Fermi surface' in the momentum distribution occur only at energies far from the chemical potential. A Luttinger Fermi surface and a nearest neighbor hopping band do not exist.

This publication has 0 references indexed in Scilit: