We present a new method for extracting excited states from a single two-point correlation function calculated on the lattice. Our method simply combines the correlation function evaluated at different time slices so as to ``subtract'' the leading exponential decay (ground state) and to give access to the first excited state. The method is applied to a quenched lattice study (volume = 24^3 x 64, beta = 6.2, 1/a = 2.55 GeV) of the first excited state of the nucleon using the local interpolating operator O = [uT C gamma5 d] u. The results are consistent with the identification of our extracted excited state with the Roper resonance N'(1440). The switching of the level ordering with respect to the negative-parity partner of the nucleon, N*(1535), is not seen at the simulated quark masses and, basing on crude extrapolations, is tentatively expected to occur close to the physical point.