Local vanishing properties of solutions of elliptic and parabolic quasilinear equations
- 1 January 1985
- journal article
- Published by American Mathematical Society (AMS) in Transactions of the American Mathematical Society
- Vol. 290 (2) , 787-814
- https://doi.org/10.1090/s0002-9947-1985-0792828-x
Abstract
We use a local energy method to study the vanishing property of the weak solutions of the elliptic equation − div A ( x , u , D u ) + B ( x , u , D u ) = 0 - \operatorname {div}\;A(x,u,Du) + B(x,u,Du) = 0 and of the parabolic equation ∂ ψ ( u ) / ∂ t − div A ( t , x , u , D u ) + B ( t , x , u , D u ) = 0 \partial \psi (u)/\partial t - \operatorname {div}\;\mathcal {A}(t,x,u,Du) + \mathcal {B}(t,x,u,Du) = 0 . The results are obtained without any assumption of monotonicity on A A , B B , A \mathcal {A} and B \mathcal {B} .Keywords
This publication has 13 references indexed in Scilit:
- Quasilinear elliptic-parabolic differential equationsMathematische Zeitschrift, 1983
- Variational inequalities of order 2m in unbounded domainsNonlinear Analysis, 1982
- Estimates on the support of the solutions of some nonlinear elliptic and parabolic problemsProceedings of the Royal Society of Edinburgh: Section A Mathematics, 1981
- Solutions with compact support for some degenerate parabolic problemsNonlinear Analysis, 1979
- Some qualitative properties of solutions of a generalised diffusion equationMathematical Proceedings of the Cambridge Philosophical Society, 1979
- Effets régularisants de semi-groupes non linéaires dans des espaces de BanachAnnales de la Faculté des sciences de Toulouse : Mathématiques, 1979
- The Porous Medium Equation in One DimensionTransactions of the American Mathematical Society, 1977
- Étude d'une équation doublement non linéaireJournal of Functional Analysis, 1977
- On the diffusion of biological populationsMathematical Biosciences, 1977
- A necessary and sufficient condition for the existence of an interface in flows through porous mediaArchive for Rational Mechanics and Analysis, 1974