Early changes in rabbit cerebral artery reactivity after subarachnoid hemorrhage.
- 1 August 1992
- journal article
- abstracts
- Published by Wolters Kluwer Health in Stroke
- Vol. 23 (8) , 1154-1162
- https://doi.org/10.1161/01.str.23.8.1154
Abstract
Subarachnoid hemorrhage frequently leads to long-term cerebral artery narrowing called vasospasm. Very early changes in cerebral arteries have not been studied extensively and may be critical for the later pathological developments. We therefore determined what changes in the reactivity of cerebral arteries could be observed after 10 minutes' or 24 hours' contact with subarachnoid blood. Ten minutes or 24 hours after the injection of blood or physiological solution (sham hemorrhage) into the cisterna magna of anesthetized rabbits or no injection (control rabbits), segments of the middle cerebral, basilar, and vertebral arteries were removed for conventional in vitro tension measurements. Concentration-response curves to four endogenous constrictors likely to be released after hemorrhage were obtained, and the maximum relaxation to acetylcholine was determined. There were no significant differences between the sham hemorrhage and control groups. Compared with control rabbits, treated animals showed increased reactivity to uridine triphosphate in the basilar and vertebral arteries at 10 minutes but not at 24 hours, whereas reactivity was increased in the middle cerebral artery only at 24 hours. Reactivity to serotonin was greatly increased in all arteries at both latencies (up to 2.7 times). Reactivity to noradrenaline was unchanged in the basilar and vertebral arteries at 10 minutes; reactivity in both the basilar and middle cerebral arteries was increased at 24 hours, which is compatible with denervation supersensitivity. There were only minor changes in the reactivity to histamine, and only at 10 minutes. Relaxation to acetylcholine was increased for the middle cerebral artery at 10 minutes but otherwise was not significantly changed. Reactivity to uridine triphosphate, serotonin, and noradrenaline greatly increases by 10 minutes to 24 hours after subarachnoid hemorrhage, and this increase is not owing to the mechanical effects of intracranial hypertension, nor is it related to impaired endothelium-dependent relaxation. It is suggested that these and other spasmogens cause excessive muscular calcium loading with a very rapid onset after subarachnoid hemorrhage.Keywords
This publication has 35 references indexed in Scilit:
- Changes of glycogen and ATP contents of the major cerebral arteries after experimentally produced subarachnoid haemorrhage in the dogActa Neurochirurgica, 1990
- Pharmacological studies on relaxation of spastic primate cerebral arteries in subarachnoid hemorrhageJournal of Neurosurgery, 1989
- RELAXATION OF RABBIT MIDDLE CEREBRAL ARTERIES IN VITRO BY H1 HISTAMINERGIC AGONISTS IS INHIBITED BY INDOMETHACIN AND TRANYLCYPROMINEFundamental & Clinical Pharmacology, 1988
- Pathological changes in cerebral arteries following experimental subarachnoid hemorrhage: Role of blood plateletsThe Anatomical Record, 1988
- Hemorrhage-induced Alterations of Rabbit Basilar Artery Reactivity and Sensitivity to SerotoninNeurosurgery, 1986
- Cerebral vasospasm following aneurysmal subarachnoid hemorrhage.Stroke, 1985
- Ultrastructure of cerebral arteries following experimental subarachnoid haemorrhage.Journal of Neurology, Neurosurgery & Psychiatry, 1985
- The Pharmacology of Cerebral VasospasmPharmacology, 1984
- Regional cerebral blood flow in the acute stage of experimentally induced subarachnoid hemorrhageJournal of Neurosurgery, 1983
- Cerebral vasospasm: presence of mast cells in human cerebral arteries after aneurysm ruptureJournal of Neurosurgery, 1981