Effect of the pem system on stable maintenance of plasmid R100 in various Escherichia coli hosts

Abstract
We cloned the pem segment of plasmid R100 containing the two genes pemI and pemK, which are responsible for stable maintenance of R100 in dividing cells, into pHS1, a temperature-sensitive replication mutant of plasmid pSC101. We then examined the effect of the pem system on the maintenance of the resultant pem + plasmid pDOM17 in various Escherichia coli host strains upon inhibition of replication of the plasmid at a high temperature. We show that the pem + plasmid was maintained stably in the cell population and efficiently in the two hosts, km1213 (polA ts) and KP64 (recA), but less efficiently in others, such as W3110, C600, P3478 (polA), and SH2743 (sfiA sfiC); the rate of cell growth was reduced at or after the time when the copy number of pDOM17 was supposed to be 0 in all of the hosts examined. We also show that a large fraction of the non-viable pDOM17-free segregant cells was produced in the former two hosts, while a smaller fraction of such cells was produced in the latter hosts, in which cell division was inhibited for several generations. Based on these results and other observations, we point out that the pemK gene product has the function not to kill the plasmid-free segregant cells, but primarily to inhibit division of these segregants. Inhibition of cell division secondarily leads to death of the plasmid-free segregants very efficiently in the two particular hosts, resulting in an apparently more stable maintenance of the pem + plasmid in these two hosts than in others.