The Leray-Schauder continuation method is a constructive element in the numerical study of nonlinear eigenvalue and bifurcation problems
- 1 January 1979
- book chapter
- Published by Springer Nature
- p. 326-409
- https://doi.org/10.1007/bfb0064326
Abstract
No abstract availableKeywords
This publication has 26 references indexed in Scilit:
- The homotopy continuation method: numerically implementable topological proceduresTransactions of the American Mathematical Society, 1978
- Finding zeroes of maps: homotopy methods that are constructive with probability oneMathematics of Computation, 1978
- Qualitative methods in bifurcation theoryBulletin of the American Mathematical Society, 1978
- Repulsive fixed points of multivalued transformations and the fixed point indexMathematische Annalen, 1975
- Dual variational methods in critical point theory and applicationsJournal of Functional Analysis, 1973
- On bifurcation from infinityJournal of Differential Equations, 1973
- Some aspects of nonlinear eigenvalue problemsRocky Mountain Journal of Mathematics, 1973
- Some global results for nonlinear eigenvalue problemsJournal of Functional Analysis, 1971
- Fixed point index and fixed point theorem for Euclidean neighborhood retractsTopology, 1965
- Neuer beweis für die invarianz der dimensionszahl und des gebietesAbhandlungen aus dem Mathematischen Seminar der Universitat Hamburg, 1928