IRAS F10214+4724: the inner 100pc

Abstract
We use new near-infrared spectroscopy and our published optical spectroscopy of the gravitationally-lensed Seyfert-2 galaxy F10214+4724 to study both the links between the starburst and AGN in this object and the properties of the inner narrow-line clouds. The UV spectrum is consistent with a compact, moderately- reddened starburst providing about half the UV light. Spectroscopy of the Halpha /[NII] line blend has enabled us to distinguish emission from the narrow-line region of the Seyfert-2 and a moderately-reddened emission line region which we argue is associated with the starburst. Estimates of the star formation rate from the UV continuum flux and the Halpha flux are broadly consistent. We can explain the unusual emission line properties of F10214+4724 in terms of conventional models for nearby Seyfert-2 galaxies if lensing is preferentially magnifying the side of the inner narrow-line region between the AGN and the observer, and the other side is both less magnified and partially obscured by the torus. The hydrogen densities of clouds in this region are high enough to make the Balmer lines optically thick and to suppress forbidden emission lines with low critical densities. We have deduced the column density of both ionised and neutral gas in the narrow-line clouds, and the density of the ionised gas. Using these we have been able to estimate the mass of the inner narrow-line clouds to be ~ 1 solar mass, and show that the gas:dust ratio NH/E(B-V) in these clouds must be ~1.3x10^{27}m^{-2}mag^{-1}, significantly higher than in the Milky Way. The cloud properties are consistent with the those of the warm absorbers seen in the X-ray spectra of Seyfert-1 galaxies. Our results favour models in which narrow-line clouds start close to the nucleus and flow out.

This publication has 0 references indexed in Scilit: