Convergence of the backfitting algorithm for additive models
- 1 December 1994
- journal article
- research article
- Published by Cambridge University Press (CUP) in Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics
- Vol. 57 (3) , 316-329
- https://doi.org/10.1017/s1446788700037721
Abstract
The backfitting algorithm is an iterative procedure for fitting additive models in which, at each step, one component is estimated keeping the other components fixed, the algorithm proceeding component by component and iterating until convergence. Convergence of the algorithm has been studied by Buja, Hastie, and Tibshirani (1989). We give a simple, but more general, geometric proof of the convergence of the backfitting algorithm when the additive components are estimated by penalized least squares. Our treatment covers spline smoothers and structural time series models, and we give a full discussion of the degenerate case. Our proof is based on Halperin's (1962) generalization of von Neumann's alternating projection theorem.Keywords
This publication has 1 reference indexed in Scilit:
- Functional Operators (AM-21), Volume 1Published by Walter de Gruyter GmbH ,1950