Allosteric regulation of the light-harvesting system of photosystem II

Abstract
Non–photochemical quenching of chlorophyll fluorescence (NPQ) is symptomatic of the regulation of energy dissipation by the light–harvesting antenna of photosystem II (PS II). The kinetics of NPQ in both leaves and isolated chloroplasts are determined by the transthylakoid ΔpH and the de–epoxidation state of the xanthophyll cycle. In order to understand the mechanism and regulation of NPQ we have adopted the approaches commonly used in the study of enzyme–catalysed reactions. Steady–state measurements suggest allosteric regulation of NPQ, involving control by the xanthophyll cycle carotenoids of a protonationdependent conformational change that transforms the PS II antenna from an unquenched to a quenched state. The features of this model were confirmed using isolated light–harvesting proteins. Analysis of the rate of induction of quenching both in vitro and in vivo indicated a bimolecular second–order reaction; it is suggested that quenching arises from the reaction between two fluorescent domains, possibly within a single protein subunit. A universal model for this transition is presented based on simple thermodynamic principles governing reaction kinetics.

This publication has 48 references indexed in Scilit: