Analog regulation of metabolic demand
Open Access
- 15 March 2011
- journal article
- research article
- Published by Springer Nature in BMC Systems Biology
- Vol. 5 (1) , 40
- https://doi.org/10.1186/1752-0509-5-40
Abstract
The 3D structure of the chromosome of the model organism Escherichia coli is one key component of its gene regulatory machinery. This type of regulation mediated by topological transitions of the chromosomal DNA can be thought of as an analog control, complementing the digital control, i.e. the network of regulation mediated by dedicated transcription factors. It is known that alterations in the superhelical density of chromosomal DNA lead to a rich pattern of differential expressed genes. Using a network approach, we analyze these expression changes for wild type E. coli and mutants lacking nucleoid associated proteins (NAPs) from a metabolic and transcriptional regulatory network perspective.Keywords
This publication has 47 references indexed in Scilit:
- RegulonDB (version 6.0): gene regulation model of Escherichia coli K-12 beyond transcription, active (experimental) annotated promoters and Textpresso navigationNucleic Acids Research, 2007
- KEGG for linking genomes to life and the environmentNucleic Acids Research, 2007
- Multidimensional annotation of the Escherichia coli K-12 genomeNucleic Acids Research, 2007
- The fluxes through glycolytic enzymes in Saccharomyces cerevisiae are predominantly regulated at posttranscriptional levelsProceedings of the National Academy of Sciences, 2007
- A genome‐scale metabolic reconstruction for Escherichia coli K‐12 MG1655 that accounts for 1260 ORFs and thermodynamic informationMolecular Systems Biology, 2007
- Homeostatic regulation of supercoiling sensitivity coordinates transcription of the bacterial genomeEMBO Reports, 2006
- Functional cartography of complex metabolic networksNature, 2005
- Expression dynamics of a cellular metabolic networkMolecular Systems Biology, 2005
- The systems biology markup language (SBML): a medium for representation and exchange of biochemical network modelsBioinformatics, 2003
- Locally Weighted Regression: An Approach to Regression Analysis by Local FittingJournal of the American Statistical Association, 1988