Tympanal hearing in the sarcophagid parasitoid fly Emblemasoma sp.: the biomechanics of directional hearing

Abstract
In Diptera, tympanal hearing has evolved at least twice in flies that belong to two different families, the tachinids and the sarcophagids. Common to these flies is their parasitoid reproductive strategy, both relying on the acoustic detection and localization of their hosts, singing insects, by means of tympanal hearing organs. In the present study, the external anatomy of the unusual hearing organs of the sarcophagid fly Emblemasoma sp. is described. The sarcophagid ears bear numerous anatomical similarities with those of ormiine tachinids: they are located on the ventral prosternum and possess a pair of scolopidial mechanoreceptive sense organs. A striking difference, however, resides in the lack of a well-defined presternum in the sarcophagid tympanal system. Instead, a deep longitudinal fold, the tympanal fold, spans both hemilateral tympanal membranes across the midline of the animal. Measured using laser Doppler vibrometry, the tympanal mechanical response in the sound field reveals asymmetrical deflection shapes that differ from those of tachinids. Lacking a central fulcrum, the sarcophagid tympanal complex presents different vibrational modes that also result in interaural coupling. The evolutionarily convergent, yet distinct, solutions used by these two small auditory systems to extract directional cues from the sound field and the role of tympanal coupling in this process are discussed.