The impact of the self-interaction error on the density functional theory description of dissociating radical cations: Ionic and covalent dissociation limits
- 8 January 2004
- journal article
- research article
- Published by AIP Publishing in The Journal of Chemical Physics
- Vol. 120 (2) , 524-539
- https://doi.org/10.1063/1.1630017
Abstract
Self-interaction corrected density functional theory was used to determine the self-interaction error for dissociating one-electron bonds. The self-interaction error of the unpaired electron mimics nondynamic correlation effects that have no physical basis where these effects increase for increasing separation distance. For short distances the magnitude of the self-interaction error takes a minimum and increases then again for decreasing R. The position of the minimum of the magnitude of the self-interaction error influences the equilibrium properties of the one-electron bond in the radical cations H 2 + ( 1 ), B 2 H 4 + ( 2 ), and C 2 H 6 + ( 3 ), which differ significantly. These differences are explained by hyperconjugative interactions in 2 and 3 that are directly reflected by the self-interaction error and its orbital contributions. The density functional theory description of the dissociating radical cations suffers not only from the self-interaction error but also from the simplified description of interelectronic exchange. The calculated differences between ionic and covalent dissociation for 1, 2, and 3 provide an excellent criterion for determining the basic failures of density functional theory, self-interaction corrected density functional theory, and other methods. Pure electronic, orbital relaxation, and geometric relaxation contributions to the self-interaction error are discussed. The relevance of these effects for the description of transition states and charge transfer complexes is shown. Suggestions for the construction of new exchange-correlation functionals are given. In this connection, the disadvantages of recently suggested self-interaction error-free density functional theory methods are emphasized.Keywords
This publication has 70 references indexed in Scilit:
- Implicit and Explicit Coverage of Multi-reference Effects by Density Functional TheoryInternational Journal of Molecular Sciences, 2002
- Efficient localized Hartree–Fock methods as effective exact-exchange Kohn–Sham methods for moleculesThe Journal of Chemical Physics, 2001
- Orbital energy analysis with respect to LDA and self-interaction corrected exchange-only potentialsThe Journal of Chemical Physics, 2001
- The role of the local-multiplicative Kohn–Sham potential on the description of occupied and unoccupied orbitalsThe Journal of Chemical Physics, 2000
- The optimized effective potential and the self-interaction correction in density functional theory: Application to moleculesThe Journal of Chemical Physics, 2000
- A Systematic Failing of Current Density Functionals: Overestimation of Two-Center Three-Electron Bonding EnergiesThe Journal of Physical Chemistry A, 1998
- Density-functional theory with optimized effective potential and self-interaction correction for ground states and autoionizing resonancesPhysical Review A, 1997
- Critical assessment of the self-interaction-corrected–local-density-functional method and its algorithmic implementationPhysical Review A, 1997
- Orbital localization in transition metal moleculesTheoretical Chemistry Accounts, 1991
- Self-consistent molecular orbital methods. XVI. Numerically stable direct energy minimization procedures for solution of Hartree–Fock equationsThe Journal of Chemical Physics, 1976