STUDIES OF LIGNIN BIOSYNTHESIS USING ISOTOPIC CARBON: XIII. THE PHENYLPROPANOID SYSTEM IN LIGNIFICATION

Abstract
Techniques of isotope competition and trapping were used to study the phenylpropanoid biosynthetic pathway in lignifying wheat plants. The results in general confirm earlier findings that phenyllactic acid (PLA), p-hydroxyphenyllactic acid (HPLA), phenylpyruvic, cinnamic, caffeic, ferulic, and sinapic acids can participate in lignification. L-Phenylalanine and L-tyrosine were converted to PLA and HPLA, respectively, but there was much less conversion of cinnamic acid to PLA, or p-hydroxycinnamic acid to HPLA. A pathway from phenylalanine to cinnamic acid via PLA, and an analogous pathway involving tyrosine thus remain as possible alternatives to the established routes involving deamination of these amino acids by phenylalanine deaminase or tyrase. Feeding of non-radioactive coniferyl alcohol with ferulic acid-C14results in the formation of both coniferyl- and sinapyl-type lignin residues having lower specific radioactivities than were obtained after the feeding of ferulic acid-C14alone. After a 5-hour metabolic period in the presence of ferulic acid-C14, both coniferyl aldehyde and coniferyl alcohol became labelled, and the radioactivity of the aldehyde was much higher than that of the alcohol. There was no evidence of coniferin formation. These findings indicate that coniferyl alcohol is formed from ferulic acid through coniferyl aldehyde, and that coniferin is probably unnecessary for lignification, at least in species other than conifers.