Resonance determination by stabilized analytic continuation of theoretical data, and comparison with the moments method
- 1 December 1987
- journal article
- research article
- Published by American Physical Society (APS) in Physical Review D
- Vol. 36 (11) , 3494-3501
- https://doi.org/10.1103/physrevd.36.3494
Abstract
The conventional methods used so far with QCD sum rules stem from the observation that -s ( being the position of the first resonance) can be written as the limit of the ratio of the nth- and (n+1)th-order moments, or are based on similar techniques such as those of Borel operators. Unfortunately, apart from the fact that practical instabilities appear because one uses high derivatives of very smooth functions, these methods do not have internal controls which would enable them to adapt to the varying precision of the theoretical information for different values of the energy in the spacelike region, to finite resonance widths, threshold behaviors, etc. There are alternative procedures, however, based on extremal problems and leading to simple (Fredholm) integral equations, which are flexible enough to accommodate these various practical requirements. Computer tests have been carried out, using these procedures, on a number of completely soluble quantum-mechanical examples, and the comparison with the conventional moments techniques is described.
Keywords
This publication has 6 references indexed in Scilit:
- A measurement of the space-like pion electromagnetic form factorNuclear Physics B, 1986
- Hadron properties from QCD sum rulesPhysics Reports, 1985
- Bounds for the continuation of perturbative results to the spectral regionJournal of Mathematical Physics, 1984
- An integral equation for the continuation of perturbative expansionsIl Nuovo Cimento A (1971-1996), 1984
- Shifman-Vainshtein-Zakharov moments and quark-antiquark potentialsNuclear Physics B, 1981
- Analysis of the pion form factor in the space-like and time-like regionThe European Physical Journal C, 1981