Dynamical invariance algebra of the Hartmann potential
- 11 September 1987
- journal article
- Published by IOP Publishing in Journal of Physics A: General Physics
- Vol. 20 (13) , 4097-4108
- https://doi.org/10.1088/0305-4470/20/13/018
Abstract
The 'accidental' degeneracy occurring in the quantum mechanical treatment of the ring-shaped potential V=- eta sigma 2r-1+1/2q eta 2 sigma 2(r sin theta )-2 is explained by constructing an su(2) dynamical invariance algebra. The Schrodinger equation is solved in parabolic coordinates written in the framework of the Kustaanheimo-Stiefel transformation and the Hamilton-Jacobi equations are solved in ordinary parabolic coordinates. All finite trajectories are found to be periodic.Keywords
This publication has 19 references indexed in Scilit:
- Kepler orbits and the harmonic oscillatorJournal of Physics A: General Physics, 1984
- Connection between the hydrogen atom and the harmonic oscillator: The zero-energy casePhysical Review A, 1984
- Does accidental degeneracy imply a symmetry group?Annals of Physics, 1983
- Subgroups of Lie groups and separation of variablesJournal of Mathematical Physics, 1981
- Spin–orbit coupling for the motion of a particle in a ring‐shaped potentialInternational Journal of Quantum Chemistry, 1980
- Perturbation theory of Kepler motion based on spinor regularization.Journal für die reine und angewandte Mathematik (Crelles Journal), 1965
- Enumeration of Potentials for Which One-Particle Schroedinger Equations Are SeparablePhysical Review B, 1948
- Zur Theorie des WasserstoffatomsThe European Physical Journal A, 1936
- Zur Theorie des WasserstoffatomsThe European Physical Journal A, 1935
- Über die quantenmechanische Herleitung der BalmertermeThe European Physical Journal A, 1933