On the mechanism for efficient repression of the interleukin-6 promoter by glucocorticoids: enhancer, TATA box, and RNA start site (Inr motif) occlusion.
Open Access
- 1 November 1990
- journal article
- research article
- Published by Taylor & Francis in Molecular and Cellular Biology
- Vol. 10 (11) , 5736-5746
- https://doi.org/10.1128/mcb.10.11.5736
Abstract
The feedback inhibition of interleukin-6 (IL-6) gene expression by glucocorticoids represents a regulatory link between the endocrine and immune systems. The mechanism of the efficient repression of the IL-6 promoter by dexamethasone (Dex) was investigated in HeLa cells transiently transfected with plasmid constructs containing different IL-6 promoter elements linked to the herpesvirus thymidine kinase gene (tk) promoter and the bacterial chloramphenicol acetyltransferase gene (cat) and cotransfected with cDNA vectors constitutively expressing either the active wild-type or inactive mutant human glucocorticoid receptor (GR). The induction by interleukin-1, tumor necrosis factor, phorbol ester, or forskolin of IL-6-tk-cat chimeric constructs containing a single copy of the IL-6 DNA segment from -173 to -151 (MRE I) or from -158 to -145 (MRE II), which derive from within the multiple cytokine- and second-messenger-responsive enhancer (MRE) region, was strongly repressed by Dex in a wild-type GR-dependent fashion irrespective of the inducer used. The induction by pseudorabies virus of an IL-6 construct containing the IL-6 TATA box and the RNA start site ("initiator" or Inr element) but not the MRE region was also repressed by Dex in the presence of wild-type GR. DNase I footprinting showed that the purified DNA-binding fragment of GR bound across the MRE, the TATA box, and the Inr site in the IL-6 promoter; this footprint overlapped that produced by proteins present in nuclear extracts from uninduced or induced HeLa cells. Imperfect palindromic nucleotide sequence motifs moderately related to the consensus GR-responsive element (GRE) motif were present at the Inr, the TATA box, and the MRE II site in the IL-6 promoter; although MRE I and a GR-binding site between -201 and -210 in IL-6 both lacked a discernible inverted repeat motif, their sequences showed considerable similarity with negative GRE sequences in other Dex-repressed genes. Surprisingly, chimeric genes containing MRE II, which lacks a recognizable GACGTCA cyclic AMP- and phorbol ester-responsive motif, were strongly induced by both phorbol ester and forskolin, suggesting that MRE II (ACATTGCACAATCT) may be the prototype of a novel cyclic AMP- and phorbol ester-responsive element. Taken together, these observations suggest that ligand-activated GR represses the IL-6 gene by occlusion not only of the inducible IL-6 MRE enhancer region but also of the basal IL-6 promoter elements.This publication has 56 references indexed in Scilit:
- Dexamethasone regulation of the expression of cytokine mRNAs induced by interleukin‐1 in the astrocytoma cell line U373MGFEBS Letters, 1989
- Detection of Circulating Tumor Necrosis Factor after Endotoxin AdministrationNew England Journal of Medicine, 1988
- Regulation of the acute phase and immune responses in viral disease. Enhanced expression of the beta 2-interferon/hepatocyte-stimulating factor/interleukin 6 gene in virus-infected human fibroblasts.The Journal of Experimental Medicine, 1988
- Bacterial lipopolysaccharide (endotoxin) enhances expression and secretion of beta 2 interferon by human fibroblasts.The Journal of Experimental Medicine, 1987
- Dexamethasone inhibits feedback regulation of the mitogenic activity of tumor necrosis factor, interleukin‐1, and epidermal growth factor in human fibroblastsJournal of Cellular Physiology, 1987
- Human β 2 Interferon and B-Cell Differentiation Factor BSF-2 Are IdenticalScience, 1987
- Gene regulation by steroid hormonesJournal of Steroid Biochemistry, 1987
- Induction of β2-interferon by tumor necrosis factor: A homeostatic mechanism in the control of cell proliferationCell, 1986
- Corticotropin-Releasing Activity of MonokinesScience, 1985
- A two-step mechanism for the interaction of estradiol with rat uterus.Proceedings of the National Academy of Sciences, 1968