Spectral Properties of Magnetic Excitations in Cuprate Two-Leg Ladder Systems

  • 15 September 2005
Abstract
This article summarizes and extends the recent developments in the microscopic modeling of the magnetic excitations in cuprate two-leg ladder systems. The microscopic Hamiltonian comprises dominant Heisenberg exchange terms plus an additional four-spin interaction which is about five times smaller. We give an overview over the relevant energies like the one-triplon dispersion, the energies of two-triplon bound states and the positions of multi-triplon continua and over relevant spectral properties like spectral weights and spectral densities in the parameter regime appropriate for cuprate systems. It is concluded that an almost complete understanding of the magnetic excitations in undoped cuprate ladders has been obtained as measured by inelastic neutron scattering, inelastic light (Raman) scattering and infrared absorption.

This publication has 0 references indexed in Scilit: