Fine-Scale Phylogenetic Discordance across the House Mouse Genome

Abstract
Population genetic theory predicts discordance in the true phylogeny of different genomic regions when studying recently diverged species. Despite this expectation, genome-wide discordance in young species groups has rarely been statistically quantified. The house mouse subspecies group provides a model system for examining phylogenetic discordance. House mouse subspecies are recently derived, suggesting that even if there has been a simple tree-like population history, gene trees could disagree with the population history due to incomplete lineage sorting. Subspecies of house mice also hybridize in nature, raising the possibility that recent introgression might lead to additional phylogenetic discordance. Single-locus approaches have revealed support for conflicting topologies, resulting in a subspecies tree often summarized as a polytomy. To analyze phylogenetic histories on a genomic scale, we applied a recently developed method, Bayesian concordance analysis, to dense SNP data from three closely related subspecies of house mice: Mus musculus musculus, M. m. castaneus, and M. m. domesticus. We documented substantial variation in phylogenetic history across the genome. Although each of the three possible topologies was strongly supported by a large number of loci, there was statistical evidence for a primary phylogenetic history in which M. m. musculus and M. m. castaneus are sister subspecies. These results underscore the importance of measuring phylogenetic discordance in other recently diverged groups using methods such as Bayesian concordance analysis, which are designed for this purpose. The phylogenetic history of individual genes can differ strongly from the species history if taxa are recently derived, making inferences of a species history from only a handful of genes especially difficult in these cases. Genome-scale data sets now allow phylogenetic histories to be reconstructed from a large number of genes. Although data sets of this size are becoming more common, few studies have characterized variation in phylogenetic history across whole genomes. We summarize fine scale variation in phylogenetic history across the genome of house mice, a recently derived group of subspecies, using a method that combines phylogenetic uncertainty among gene trees. We document substantial variation in phylogenetic history among 14,081 loci and describe a primary history in the face of this variation. These results support the use of genome-scale datasets and methods that accommodate phylogenetic discordance in attempts to reconstruct the history of closely related groups.