Cloning and sequencing of a gene encoding acidophilic amylase from Bacillus acidocaldarius

Abstract
SUMMARY: Two starch-degrading enzymes produced by Bacillus acidocaldavius (renamed as Alicyclobacillus acidocaldarius) were identified. According to SDS-PAGE, the apparent molecular masses of the enzymes were 90 and 160 kDa. Eight peptide fragments and the N-terminal end of the 90 kDa polypeptide were sequenced. An oligonucleotide, based on the amino acid sequence of a peptide fragment of the 90 kDa protein, was used to screen a lDgt10 bank of B. acidocaldarius, and the region encoding the 90 kDa protein was cloned. Unexpectedly, the ORF continued upstream of the N terminus of the 90 kDa protein. The entire ORF was 1301 amino acids (aa) long (calculated molecular mass 140 kDa) and it was preceded by a putative ribosomal binding site and a promoter. Computer analysis showed that the 1301 aa protein was closely related to an α-amylase-pullulanase of Clostridium thermohydrosulfuricum. We suggest that the starch-degrading 160 kDa protein of B. acidocaldarius is an α-amylase-pullulanase, and the 90 kDa protein is a cleavage product of the 160 kDa protein. Another ORF, apparently in the same transcription unit, was found downstream from the amylase gene. It encoded a protein that was closely related to the maltose-binding protein of Escherichia coli.

This publication has 0 references indexed in Scilit: