Immunoexpression of Aquaporin-1 in the Efferent Ducts of the Rat and Marmoset Monkey during Development, Its Modulation by Estrogens, and Its Possible Role in Fluid Resorption

Abstract
Recent data suggest that estrogens play a role in regulating fluid resorption from the efferent ducts, though the biochemical mechanisms involved are unknown. The present study has used immunocytochemistry to localize a water channel protein, Aquaporin-1 (AQP-1), to the efferent ducts of male rats and marmoset monkeys from perinatal life through to adulthood and has then investigated its potential hormonal regulation in neonatal/peripubertal life, via administration of a GnRH antagonist (GnRHa) or diethylstilbestrol (DES) to rats. AQP-1 was immunoexpressed intensely in the apical brush border of the epithelium lining the efferent ducts at all ages studied, from late fetal life through puberty to adulthood. In the marmoset, but not the rat, AQP-1 was also expressed in the epithelium of the rete testis. Once the cell types within the efferent duct epithelium had differentiated, it was clear that only nonciliated cells of the rat localized AQP-1. When gonadotropin secretion was suppressed in rats by neonatal administration of GnRHa, immunoexpression of AQP-1 at age 18 and 25 days was virtually unchanged in intensity, though the efferent ducts were reduced in size. In contrast, when DES was administered neonatally to rats (up to day 12), immunoexpression of AQP-1 was reduced at day 10, virtually abolished at day 18, reduced markedly at day 25 and to a small extent at day 35; these findings were confirmed by Western blot analysis at day 18. The DES-induced decrease in immunoexpression of AQP-1 was accompanied by pronounced distension of the efferent ducts and rete, consistent with reduced fluid resorption. The epithelial cells of the efferent ducts in DES-treated rats were cuboidal rather than columnar in shape as in controls and were reduced significantly in height compared with controls at all ages through to adulthood. These findings suggest that estrogens may play a role in regulating fluid resorption from the efferent ducts during fetal/neonatal development and/or a role in the gross and functional development of the efferent ducts and rete testis. The present data also suggest that AQP-1 is one of the elements involved in the regulation of fluid resorption in the efferent ducts. The importance of fluid flow in fetal/neonatal development of the excurrent duct system of the male is also suggested by these observations.

This publication has 0 references indexed in Scilit: