The Role of Water Vapor Feedback in Unperturbed Climate Variability and Global Warming
- 1 August 1999
- journal article
- Published by American Meteorological Society in Journal of Climate
- Vol. 12 (8) , 2327-2346
- https://doi.org/10.1175/1520-0442(1999)012<2327:trowvf>2.0.co;2
Abstract
To understand the role of water vapor feedback in unperturbed surface temperature variability, a version of the Geophysical Fluid Dynamics Laboratory coupled ocean–atmosphere model is integrated for 1000 yr in two configurations, one with water vapor feedback and one without. For all spatial scales, the model with water vapor feedback has more low-frequency (timescale ≥ 2 yr) surface temperature variability than the one without. Thus water vapor feedback is positive in the context of the model’s unperturbed variability. In addition, water vapor feedback is more effective the longer the timescale of the surface temperature anomaly and the larger its spatial scale. To understand the role of water vapor feedback in global warming, two 500-yr integrations were also performed in which CO2 was doubled in both model configurations. The final surface global warming in the model with water vapor feedback is 3.38°C, while in the one without it is only 1.05°C. However, the model’s water vapor feedback has a... Abstract To understand the role of water vapor feedback in unperturbed surface temperature variability, a version of the Geophysical Fluid Dynamics Laboratory coupled ocean–atmosphere model is integrated for 1000 yr in two configurations, one with water vapor feedback and one without. For all spatial scales, the model with water vapor feedback has more low-frequency (timescale ≥ 2 yr) surface temperature variability than the one without. Thus water vapor feedback is positive in the context of the model’s unperturbed variability. In addition, water vapor feedback is more effective the longer the timescale of the surface temperature anomaly and the larger its spatial scale. To understand the role of water vapor feedback in global warming, two 500-yr integrations were also performed in which CO2 was doubled in both model configurations. The final surface global warming in the model with water vapor feedback is 3.38°C, while in the one without it is only 1.05°C. However, the model’s water vapor feedback has a...Keywords
This publication has 0 references indexed in Scilit: