Recent Progress of Computer Aided Simulation of Chip Flow and Tool Damage in Metal Machining

Abstract
A computer simulation approach to the predictions of chip flow and tool damage in metal machining is reviewed based on the authors' recent work. Not only finite element simulation theory but also material characteristics to be included in the analysis are stressed, since machining phenomena are intimately associated with elastic-plastic deformation and fracture of work materials at high strain rates and high temperatures. Temperature rise in the tool and workpiece should be incorporated in the machining simulation as well. Various simulation results together with some comparisons with experiments are shown, such as two-dimensional continuous and discontinuous chip formation, wear and fracture of a cutting tool and more practical three-dimensional machining. Finally, a new concept of computational machining or virtual machining simulation is envisaged in the light of further development of the present computer aided simulation.