A method for constructing data-based models of spiking neurons using a dynamic linear-static nonlinear cascade
- 1 May 1993
- journal article
- Published by Springer Nature in Biological Cybernetics
- Vol. 69 (1) , 67-76
- https://doi.org/10.1007/bf00201409
Abstract
This paper describes a general nonlinear dynamical model for neural system identification. It describes an algorithm for fitting a simple form of the model to spike train data, and reports on this algorithm's performance in identifying the structure and parameters of simulated neurons. The central element of the model is a Wiener-Bose dynamic nonlinearity that ensures that the model is able to approximate the behaviour of an arbitrary nonlinear dynamical system. Nonlinearities associated with spike generation and transmission are treated by placing the Wiener-Bose system in cascade with pulse frequency modulators and demodulators, and the static nonlinearity at the output of the Wiener-Bose system is decomposed into a rectifier and a multinomial. This simplifies the model without reducing its generality for neuronal system identification. Model elements can be characterised using standard methods of dynamical systems analysis, and the model has a simple form that can be implemented and simulated efficiently. This model bears a structural resemblance to real neurons; it may be regarded as a connectionist “neuron” that has been generalized in a realistic way to enable it to mimic the behaviour of an arbitrary nonlinear system, or conversely as a general nonlinear model that has been constrained to make it easy to fit to spike train data. Tests with simulated data show that the identification algorithm can accurately estimate the structure and parameters of neuron-like nonlinear dynamical systems using data sets containing only a few hundred spikes.Keywords
This publication has 13 references indexed in Scilit:
- Digital filters for firing rate estimationBiological Cybernetics, 1992
- Dissection of a nonlinear cascade model for sensory encodingAnnals of Biomedical Engineering, 1991
- Signal transformation and coding in neural systemsIEEE Transactions on Biomedical Engineering, 1989
- White-noise analysis of nonlinear behavior in an insect sensory neuron: Kernel and cascade approachesBiological Cybernetics, 1988
- Identifying nonlinear difference equation and functional expansion representations: The fast orthogonal algorithmAnnals of Biomedical Engineering, 1988
- Applications of minimum-order Wiener modeling to retinal ganglion cell spatiotemporal dynamicsBiological Cybernetics, 1987
- The identification of nonlinear biological systems: Wiener and Hammerstein cascade modelsBiological Cybernetics, 1986
- Minimum-order Wiener modelling of spike-output systemsBiological Cybernetics, 1986
- Brain modeling by tensor network theory and computer simulation. The cerebellum: Distributed processor for predictive coordinationNeuroscience, 1979
- Measurement of the Wiener Kernels of a Non-linear System by Cross-correlation†International Journal of Control, 1965