The P190, P210, and P230 Forms of the BCR/ABL Oncogene Induce a Similar Chronic Myeloid Leukemia–like Syndrome in Mice but Have Different Lymphoid Leukemogenic Activity
Open Access
- 3 May 1999
- journal article
- Published by Rockefeller University Press in The Journal of Experimental Medicine
- Vol. 189 (9) , 1399-1412
- https://doi.org/10.1084/jem.189.9.1399
Abstract
The product of the Philadelphia chromosome (Ph) translocation, the BCR/ABL oncogene, exists in three principal forms (P190, P210, and P230 BCR/ABL) that are found in distinct forms of Ph-positive leukemia, suggesting the three proteins have different leukemogenic activity. We have directly compared the tyrosine kinase activity, in vitro transformation properties, and in vivo leukemogenic activity of the P190, P210, and P230 forms of BCR/ABL. P230 exhibited lower intrinsic tyrosine kinase activity than P210 and P190. Although all three oncogenes transformed both myeloid (32D cl3) and lymphoid (Ba/F3) interleukin (IL)-3–dependent cell lines to become independent of IL-3 for survival and growth, their ability to stimulate proliferation of Ba/F3 lymphoid cells differed and correlated directly with tyrosine kinase activity. In a murine bone marrow transduction/transplantation model, the three forms of BCR/ABL were equally potent in the induction of a chronic myeloid leukemia (CML)–like myeloproliferative syndrome in recipient mice when 5-fluorouracil (5-FU)–treated donors were used. Analysis of proviral integration showed the CML-like disease to be polyclonal and to involve multiple myeloid and B lymphoid lineages, implicating a primitive multipotential target cell. Secondary transplantation revealed that only certain minor clones gave rise to day 12 spleen colonies and induced disease in secondary recipients, suggesting heterogeneity among the target cell population. In contrast, when marrow from non– 5-FU–treated donors was used, a mixture of CML-like disease, B lymphoid acute leukemia, and macrophage tumors was observed in recipients. P190 BCR/ABL induced lymphoid leukemia with shorter latency than P210 or P230. The lymphoid leukemias and macrophage tumors had provirus integration patterns that were oligo- or monoclonal and limited to the tumor cells, suggesting a lineage-restricted target cell with a requirement for additional events in addition to BCR/ABL transduction for full malignant transformation. These results do not support the hypothesis that P230 BCR/ABL induces a distinct and less aggressive form of CML in humans, and suggest that the rarity of P190 BCR/ABL in human CML may reflect infrequent BCR intron 1 breakpoints during the genesis of the Ph chromosome in stem cells, rather than intrinsic differences in myeloid leukemogenicity between P190 and P210.Keywords
This publication has 81 references indexed in Scilit:
- P210 and P190 Induce the Tyrosine Phosphorylation and DNA Binding Activity of Multiple Specific STAT Family MembersJournal of Biological Chemistry, 1996
- Stat6 Is Required for Mediating Responses to IL-4 and for the Development of Th2 CellsPublished by Elsevier ,1996
- The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotypeImmunity, 1994
- Improved Methods of Retroviral Vector Transduction and Production for Gene TherapyHuman Gene Therapy, 1994
- Transplantable myeloproliferative disease induced in mice by an interleukin 6 retrovirus.The Journal of Experimental Medicine, 1992
- Tyrosine Kinase Activity and Transformation Potency of bcr-abl Oncogene ProductsScience, 1990
- Induction of Chronic Myelogenous Leukemia in Mice by the P210
bcr/abl
Gene of the Philadelphia ChromosomeScience, 1990
- Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22Cell, 1984
- A quantitative assay for transformation of bone marrow cells by Abelson murine leukemia virus.The Journal of Experimental Medicine, 1976
- The distribution of colony‐forming cells among spleen coloniesJournal of Cellular and Comparative Physiology, 1963