Microlithography Using A Laser Plasma Created X-Ray Source

Abstract
Laser produced plasmas are investigated both theoretically and experimentally with respect to their suitability as X-ray lithography sources. We find that a minimum of 100 W average laser power is required for an acceptable wafer throughput (36 6 in. wafer/h). In addition, the optimization of the X-ray conversion efficiency in the keV range (0.75-2 keV) necessitates a laser intensity greater than 1 x 1013 W cm-2 and a judicious choice of target atomic number. We also describe a simulation program called XLIMLAS which can be used, for instance, to determine the laser conditions which maximize the energy deposited in the resist by matching the X-ray spectrum to the wavelength dependent mask substrate transmission and to the resist absorption. Moreover, this optimisation must ensure a high quality of the resist line edge profiles. Finally, we present some experimental results on sensitivity and patternability of FBM120 resist.

This publication has 0 references indexed in Scilit: