PHOTODYNAMIC THERAPY OF CHEMICALLY‐ AND ULTRAVIOLET B RADIATION‐INDUCED MURINE SKIN PAPILLOMAS BY CHLOROALUMINUM PHTHALOCYANINE TETRASULFONATE
- 1 July 1992
- journal article
- Published by Wiley in Photochemistry and Photobiology
- Vol. 56 (1) , 43-50
- https://doi.org/10.1111/j.1751-1097.1992.tb09600.x
Abstract
— Photodynamic therapy (PDT) of cancer combines irradiation of tumors with visible light following selective uptake of the photosensitizer by the tumor cells. PhotofrinR‐II (Pf‐II) is the only photosensitizer which is in clinical use in PDT, whereas chloroaluminum phthalocyanine tetrasulfonate (AIPcTS) has also shown promise in preclinical studies. In most such studies, the effectiveness of the photosensitizers has been assessed in implanted tumor model systems rather than in model systems where tumors are allowed to grow in their own connective tissue matrix. In this study the pharmacoki‐netics, tumor ablation capability and cutaneous photosensitization response of AlPcTS have been assessed in mice bearing chemically‐ and ultraviolet B radiation (UVB)‐induced benign skin papillomas. When tumor‐bearing animals were injected intraperitoneally with AlPcTS (5 mg/kg body wt), maximum tumor:normal skin ratio of 2.4 was observed at 48 h, at which time the mice were irradiated within the absorption spectrum of the photosensitizer. In tumor ablation studies with SENCAR mice bearing chemically‐induced skin tumors, AlPcTS resulted in greater than 80% ablation in tumor volume at 20 days post‐irradiation. In cutaneous photosensitization response, AlPcTS produced only transient effects (no effect after 24 h) in SENCAR mice. Pharmacokinetics data, tumor ablation effects and cutaneous photosensitization response of AlPcTS were comparable in SKH‐1 hairless mice bearing UVB‐induced skin tumors. Our data indicate that AlPcTS produces significant photodynamic effects towards the ablation of murine skin tumors, and that it does not produce prolonged cutaneous photosensitivity.Keywords
This publication has 43 references indexed in Scilit:
- Evidence for the involvement of singlet oxygen in the photodestruction by chloroaluminum phthalocyanine tetrasulfonateBiochemical and Biophysical Research Communications, 1990
- Mechanism of Tumor Destruction Following Photodynamic Therapy With Hematoporphyrin Derivative, Chlorin, and PhthalocyanineJNCI Journal of the National Cancer Institute, 1988
- INDUCTION OF DNA-PROTEIN CROSS-LINKS IN CHINESE HAMSTER CELLS BY THE PHOTODYNAMIC ACTION OF CHLOROALUMINUM PHTHALOCYANINE AND VISIBLE LIGHTPhotochemistry and Photobiology, 1988
- In situ evidence for the involvement of superoxide anions in cutaneous porphyrin photosensitizationBiochemical and Biophysical Research Communications, 1988
- PHOTOSENSITIZERS: THERAPY AND DETECTION OF MALIGNANT TUMORSPhotochemistry and Photobiology, 1987
- Cutaneous Porphyrin Photosensitization: Murine Ear Swelling as a Marker of the Acute ResponseJournal of Investigative Dermatology, 1986
- Porphyrin-sensitized photodynamic inactivation of cells: A reviewLasers in Medical Science, 1986
- Synthesis, tissue distribution and tumor uptake of 99mTc- and 67Ga- TetrasulfophthalocyanineThe International Journal of Applied Radiation and Isotopes, 1985
- Altered Patterns of Cutaneous Xenobiotic Metabolism in UVB-Induced Squamous Cell Carcinoma in SKH-1 Hairless MiceJournal of Investigative Dermatology, 1985
- Synthesis, tissue distribution and tumor uptake of [99Tc]tetrasulfophthalocyanineThe International Journal of Applied Radiation and Isotopes, 1983