Engagement of OX40 Enhances Antigen-Specific CD4+ T Cell Mobilization/Memory Development and Humoral Immunity: Comparison of αOX-40 with αCTLA-4

Abstract
Increasing the long-term survival of memory T cells after immunization is key to a successful vaccine. In the past, the generation of large numbers of memory T cells in vivo has been difficult because Ag-stimulated T cells are susceptible to activation-induced cell death. Previously, we reported that OX40 engagement resulted in a 60-fold increase in the number of Ag-specific CD4+ memory T cells that persisted 60 days postimmunization. In this report, we used the D011.10 adoptive transfer model to examine the kinetics of Ag-specific T cell entry into the peripheral blood, the optimal route of administration of Ag and αOX40, and the Ag-specific Ab response after immunization with soluble OVA and αOX40. Finally, we compared the adjuvant properties of αOX40 to those of αCTLA-4. Engagement of OX-40 in vivo was most effective when the Ag was administered s.c. Time course studies revealed that it was crucial for αOX40 to be delivered within 24–48 h after Ag exposure. Examination of anti-OVA Ab titers revealed a 10-fold increase in mice that received αOX40 compared with mice that received OVA alone. Both αOX40 and αCTLA-4 increased the percentage of OVA-specific CD4+ T cells early after immunization (day 4), but αOX40-treated mice had much higher percentages of OVA-specific memory CD4+ T cells from days 11 to 29. These studies demonstrate that OX40 engagement early after immunization with soluble Ag enhances long-term T cell and humoral immunity in a manner distinct from that provided by blocking CTLA-4.