Spectroscopic Characterization of the Heme-Binding Sites inPlasmodium falciparumHistidine-Rich Protein 2

Abstract
Proteolysis of hemoglobin provides an essential nutrient source for the malaria parasite Plasmodium falciparum during the intraerythrocytic stage of the parasite's lifecycle. Detoxification of the liberated heme occurs through a unique heme polymerization pathway, leading to the formation of hemozoin. Heme polymerization has been demonstrated in the presence of P. falciparum histidine-rich protein 2 (PfHRP2) [Sullivan, D. J., Gluzman, I. Y., and Goldberg, D. E. (1996) Science 271, 219−221]; however, the molecular role that PfHRP2 plays in this polymerization is currently unknown. PfHRP2 is a 30 kDa protein composed of several His-His-Ala-His-His-Ala-Ala-Asp repeats and is present in the parasite food vacuole, the site of hemoglobin degradation and heme polymerization. We found that, at pH 7.0, PfHRP2 forms a saturable complex with heme, with a PfHRP2 to heme stoichiometry of 1:50. Spectroscopic characterization of heme binding by electronic absorption, resonance Raman, and EPR has shown that bound hemes share remarkably similar heme environments as >95% of all bound hemes are six-coordinate, low-spin, and bis-histidyl ligated. The PfHRP2−ferric heme complex at pH 5.5 (pH of the food vacuole) has the same heme spin state and coordination as observed at pH 7.0; however, polymerization occurs as heme saturation is approached. Therefore, formation of a PfHRP2−heme complex appears to be a requisite step in the formation of hemozoin.