Abstract
The response of a soft-phonon ferroelectric material subjected to a high-intensity optical pulse of duration much shorter than the period of the phonon is modeled using a classical, finite-temperature simulation. It is found that complete, permanent reversal of the orientation of the ferroelectric domains may occur even when the energy per atom imparted by the light pulse is much less than the average thermal energy. The result raises the possibility of using the effect to create optical switches or data storage media with switching times less than 10 psec.