Abstract
This analysis develops a three-dimensional analytical model for the crack propagation phase of the surface pitting failure process. An initiated pre-pitting crack is simulated as a semi-circular inclined planar surface crack in a half-space. The cyclic contact fatigue loading is approximated by a repetitious Hertzian line loading moving quasi-statically across the half-space surface with both normal and shear components. Three-dimensional fracture mechanics is utilized to determine the three modes of stress intensity factors around the crack front. A mixed mode fatigue crack growth law is employed to estimate both crack growth geometry and crack propagation life. Numerical results are presented for a 45 degree inclined crack and for the 20 to 30 degree shallow crack angle which is experimentally observed. Life estimates from the present calculations are in line with previous experimental measurements.

This publication has 31 references indexed in Scilit: