Free-electron-laser-based biophysical and biomedical instrumentation
- 24 June 2003
- journal article
- Published by AIP Publishing in Review of Scientific Instruments
- Vol. 74 (7) , 3207-3245
- https://doi.org/10.1063/1.1584078
Abstract
A survey of biophysical and biomedical applications of free-electron lasers (FELs) is presented. FELs are pulsed light sources, collectively operating from the microwave through the x-ray range. This accelerator-based technology spans gaps in wavelength, pulse structure, and optical power left by conventional sources. FELs are continuously tunable and can produce high-average and high-peak power. Collectively, FEL pulses range from quasicontinuous to subpicosecond, in some cases with complex superpulse structures. Any given FEL, however, has a more restricted set of operational parameters. FELs with high-peak and high-average power are enabling biophysical and biomedical investigations of infrared tissue ablation. A midinfrared FEL has been upgraded to meet the standards of a medical laser and is serving as a surgical tool in ophthalmology and human neurosurgery. The ultrashort pulses produced by infrared or ultraviolet FELs are useful for biophysical investigations, both one-color time-resolved spectroscopy and when coupled with other light sources, for two-color time-resolved spectroscopy. FELs are being used to drive soft ionization processes in mass spectrometry. Certain FELs have high repetition rates that are beneficial for some biophysical and biomedical applications, but confound research for other applications. Infrared FELs have been used as sources for inverse Compton scattering to produce a pulsed, tunable, monochromatic x-ray source for medical imaging and structural biology. FEL research and FEL applications research have allowed the specification of spin-off technologies. On the horizon is the next generation of FELs, which is aimed at producing ultrashort, tunable x rays by self-amplified spontaneous emission with potential applications in biology.Keywords
This publication has 119 references indexed in Scilit:
- Thermal diffusion and chemical kinetics in laminar biomaterial due to heating by a free-electron laserPhysical Review E, 2002
- Putting Free-Electron Lasers to WorkPhysics Today, 2002
- Matrix-assisted ultraviolet laser desorption of non-volatile compoundsPublished by Elsevier ,2001
- Ion formation in MALDI mass spectrometryMass Spectrometry Reviews, 1998
- Matrix-assisted laser desorption and ionization in the OH and CO absorption bands of aliphatic and aromatic matrices: dependence on laser wavelength and temporal beam profileInternational Journal of Mass Spectrometry and Ion Processes, 1997
- Power delivery of free electron laser light by hollow glass waveguidesApplied Optics, 1996
- Mutations caught in the actNature, 1995
- Fast laser beam position control with submicroradian precisionOptics Communications, 1988
- On the origin of heterogeneity of fluorescence decay kinetics of reduced nicotinamide adenine dinucleotideBiochemical and Biophysical Research Communications, 1987
- Collective instabilities and high-gain regime in a free electron laserOptics Communications, 1984