Differential Regulation of Caspase-1 Activation, Pyroptosis, and Autophagy via Ipaf and ASC in Shigella-Infected Macrophages

Top Cited Papers
Open Access
Abstract
Shigella infection, the cause of bacillary dysentery, induces caspase-1 activation and cell death in macrophages, but the precise mechanisms of this activation remain poorly understood. We demonstrate here that caspase-1 activation and IL-1β processing induced by Shigella are mediated through Ipaf, a cytosolic pattern-recognition receptor of the nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family, and the adaptor protein apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain (ASC). We also show that Ipaf was critical for pyroptosis, a specialized form of caspase-1-dependent cell death induced in macrophages by bacterial infection, whereas ASC was dispensable. Unlike that observed in Salmonella and Legionella, caspase-1 activation induced by Shigella infection was independent of flagellin. Notably, infection of macrophages with Shigella induced autophagy, which was dramatically increased by the absence of caspase-1 or Ipaf, but not ASC. Autophagy induced by Shigella required an intact bacterial type III secretion system but not VirG protein, a bacterial factor required for autophagy in epithelial-infected cells. Treatment of macrophages with 3-methyladenine, an inhibitor of autophagy, enhanced pyroptosis induced by Shigella infection, suggesting that autophagy protects infected macrophages from pyroptosis. Thus, Ipaf plays a critical role in caspase-1 activation induced by Shigella independently of flagellin. Furthermore, the absence of Ipaf or caspase-1, but not ASC, regulates pyroptosis and the induction of autophagy in Shigella-infected macrophages, providing a novel function for NLR proteins in bacterial–host interactions. Shigella are bacterial pathogens that are the cause of bacillary dysentery known as shigellosis. A crucial aspect of the propensity of Shigella to cause diseases lies in its ability to invade the cytoplasm of epithelial cells as well as macrophages. The bacterial invasion of macrophages induces pyroptosis, the proinflammatory cell death associated with caspase-1 activation. Activated caspase-1 then cleaves and activates prointerleukin (proIL)-1β and proIL-18, which are proinflammatory cytokines involved in host inflammatory responses. However, the precise mechanisms of caspase-1 activation induced by Shigella infection remain poorly understood. Ipaf, a cytosolic pattern-recognition receptor of the nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family, is a crucial host factor that activates caspase-1 through the sensing of flagellin produced by some bacteria, such as Salmonella or Legionella. We discovered that Ipaf and the adaptor protein ASC are required for caspase-1 activation induced by non-flagellated Shigella infection. Thus, Ipaf and ASC mediate caspase-1 activation by sensing an unknown bacterial factor, but not flagellin. Autophagy, a cellular system for eliminating intracellular pathogens, was dramatically enhanced in Shigella-infected macrophages by the absence of caspase-1 or Ipaf, but not ASC. The inhibition of autophagy promoted Shigella-induced cell death, suggesting that autophagy protects infected macrophages from pyroptosis. This study provides evidence that in Shigella-infected macrophages, autophagy is inhibited by Ipaf and caspase-1, but positively regulated by ASC, providing a novel function for NLR proteins in bacterial–host interactions.