Abstract
The question asked was why male genitalic structures have diverged in three syntopic species of Macrodactylus beetles. Four hypotheses were evaluated: 1. The ways in which male genitalia mesh with internal female structures indicate that selection for species isolation via mechanical exclusion (“lock and key”) is unlikely to explain the genitalic differences. 2. The specific mate recognition hypothesis also clearly fails to explain genitalic differences due to the implausibility of postulated environmental effects on genitalia, and lack of postulated coevolution of male and female morphologies. 3. Selection for species isolation via differences in genitalic stimulation (sensory lock and key) is unlikely due to relatively infrequent cross-specific pair formation and intromission in the field, and “excessive” numbers of species-specific genitalic structures and male courtship behavior patterns which nevertheless occasionally fail. It also fails to explain the frequent failure of intraspecific copulations to result in sperm transfer. This hypothesis cannot, however, be rejected as confidently as the previous hypotheses. 4. Conditions under which sexual selection by cryptic female choice could take place are common. Females frequently exercise their ability to prevent sperm transfer by conspecific males even after intromission has occurred, and females generally mate repeatedly, probably with different males. Males behave as if cryptic female choice is occurring, courting assiduously while their genitalia are within the female. Sexual selection by female choice could thus contribute to the divergence in genitalic structures.
Funding Information
  • Smithsonian Tropical Research Institute
  • Vicerrectoría de Investigación, Universidad de Costa Rica