Probabilities on finite models
- 12 March 1976
- journal article
- Published by Cambridge University Press (CUP) in The Journal of Symbolic Logic
- Vol. 41 (1) , 50-58
- https://doi.org/10.2307/2272945
Abstract
Let be a finite set of (nonlogical) predicate symbols. By an -structure, we mean a relational structure appropriate for . Let be the set of all -structures with universe {1, …, n}. For each first-order -sentence σ (with equality), let μn(σ) be the fraction of members of for which σ is true. We show that μn(σ) always converges to 0 or 1 as n → ∞, and that the rate of convergence is geometrically fast. In fact, if T is a certain complete, consistent set of first-order -sentences introduced by H. Gaifman [6], then we show that, for each first-order -sentence σ, μn(σ) →n 1 iff T ⊩ ω. A surprising corollary is that each finite subset of T has a finite model. Following H. Scholz [8], we define the spectrum of a sentence σ to be the set of cardinalities of finite models of σ. Another corollary is that for each first-order -sentence a, either σ or ˜σ has a cofinite spectrum (in fact, either σ or ˜σ is “nearly always“ true).Let be a subset of which contains for each in exactly one structure isomorphic to . For each first-order -sentence σ, let νn(σ) be the fraction of members of which a is true. By making use of an asymptotic estimate [3] of the cardinality of and by our previously mentioned results, we show that vn(σ) converges as n → ∞, and that limn νn(σ) = limn μn(σ).If contains at least one predicate symbol which is not unary, then the rate of convergence is geometrically fast.Keywords
This publication has 3 references indexed in Scilit:
- Concerning measures in first order calculiIsrael Journal of Mathematics, 1964
- Applications of the Löwenheim–Skolem–Tarski Theorem to Problems of Completeness and DecidabilityIndagationes Mathematicae, 1954
- ProblemsThe Journal of Symbolic Logic, 1952