Raised intracranial pressure and cerebral blood flow: 3. Venous outflow tract pressures and vascular resistances in experimental intracranial hypertension
Open Access
- 1 April 1974
- journal article
- research article
- Published by BMJ in Journal of Neurology, Neurosurgery & Psychiatry
- Vol. 37 (4) , 392-402
- https://doi.org/10.1136/jnnp.37.4.392
Abstract
Pressure changes within the venous outflow tract from the brain were studied in anaesthetized baboons. Segmental vascular resistance changes were also calculated and the results correlated with the changes in cerebral blood flow, measured by the 133Xenon clearance method. Three different methods were used to raise intracranial pressure: cisterna magna infusion, a supratentorial subdural balloon, and an infratentorial subdural balloon. A close correlation was found between the cortical vein pressure and intracranial pressure with all methods of raising intracranial pressure: the overall correlation coefficient was 0·98. In the majority of animals sagittal sinus pressure showed little change through a wide range of intracranial pressure. In three of the six animals in the cisterna magna infusion group, however, sagittal sinus pressure increased to levels approaching the intracranial pressure during the later stages of intracranial hypertension. Jugular venous pressure showed little change with increasing intracranial pressure. The relationship between cerebral prefusion pressure and cerebral blood flow differed according to the method of increasing intracranial pressure. This was due to differing patterns of change in prevenous vascular resistance as venous resistance increased progressively with increasing pressure in all three groups. The present results confirm, therefore, the validity of the current definition of cerebral perfusion pressure—that is, cerebral perfusion pressure is equal to mean arterial pressure minus mean intracranial pressure—by demonstrating that intracranial pressure does represent the effective cerebral venous outflow pressure.Keywords
This publication has 21 references indexed in Scilit:
- Raised intracranial pressure and cerebral blood flow: 2. Supratentorial and infratentorial mass lesions in primatesJournal of Neurology, Neurosurgery & Psychiatry, 1973
- Raised intracranial pressure and cerebral blood flow: I. Cisterna magna infusion in primatesJournal of Neurology, Neurosurgery & Psychiatry, 1972
- Concepts of Cerebral Perfusion Pressure and Vascular Compression During Intracranial HypertensionPublished by Elsevier ,1972
- THE MECHANISM OF DRAINAGE OF THE CEREBROSPINAL FLUIDBrain, 1970
- Reaction of the Cerebral Venous Sinus System to Acute Intracranial HypertensionJournal of Neurosurgery, 1970
- Effects of Varied Cerebrospinal Fluid Pressure on Cerebral Blood Flow in DogsActa Physiologica Scandinavica, 1970
- Infratentorial Tumors and the Dural Venous SinusesJournal of Neurosurgery, 1966
- Small artery and vein pressures in the subarachnoid space of the dogJournal of Surgical Research, 1965
- THE EFFECTS OF INCREASED INTRACRANIAL PRESSURE ON CEREBRAL CIRCULATORY FUNCTIONS IN MAN 1Journal of Clinical Investigation, 1948
- EXPERIMENTAL OBSERVATIONS ON INCREASED INTRACRANIAL PRESSUREAnz Journal of Surgery, 1938