Massive molecular outflows at high spatial resolution
Preprint
- 24 February 2004
Abstract
We present high-spatial resolution Plateau de Bure Interferometer CO(2-1) and SiO(2-1) observations of one intermediate-mass and one high-mass star-forming region. The intermediate-mass region IRAS20293+3952 exhibits four molecular outflows, one being as collimated as the highly collimated jet-like outflows observed in low-mass star formation sources. Furthermore, comparing the data with additional infrared H2 and cm observations we see indications that the nearby ultracompact HII region triggers a shock wave interacting with the outflow. The high-mass region IRAS19217+1651 exhibits a bipolar outflow as well and the region is dominated by the central driving source. Adding two more sources from the literature, we compare position-velocity diagrams of the intermediate- to high-mass sources with previous studies in the low-mass regime. We find similar kinematic signatures, some sources can be explained by jet-driven outflows whereas other are better constrained by wind-driven models. The data also allow to estimate accretion rates varying from a few times 10^{-5}Msun/yr for the intermediate-mass sources to a few times 10^{-4}Msun/yr for the high-mass source, consistent with models explaining star formation of all masses via accretion processes.Keywords
All Related Versions
- Version 1, 2004-02-24, ArXiv
- Published version: The Astrophysical Journal, 608 (1), 330.
This publication has 0 references indexed in Scilit: