Evaluation of neuronal coupling dynamics

Abstract
Temporary correlated activity of neuron assemblies is believed to play a substantial role for the brain's pattern recognition ability. To study the underlying principles of such mechanisms, a method is proposed for the characterization of the interneuronal and stimulus-response coupling changes of two periodically driven and simultaneously recorded units. The coupling measure is derived from the cross correlation function by calculating the actual correlation contributions without performing the subsequent time-average (which would give the cross correlation function). Examples are given for simultaneously recorded spike trains from visual cortical units, but the method can be applied equally well to evoked potentials or intracellular recordings.