Regulation of renal 25(OH)D3 1α-hydroxylase: signal transduction pathways
- 1 December 1991
- journal article
- review article
- Published by Canadian Science Publishing in Biochemistry and Cell Biology
- Vol. 69 (12) , 768-770
- https://doi.org/10.1139/o91-118
Abstract
In vitro, activation of the cAMP signalling pathway stimulates, whereas activation of PKC inhibits, 1,25(OH)2D3 synthesis. Since PTH activates both pathways, the ultimate effect of PTH on 1 alpha-hydroxylation in vivo likely depends on other endocrine-autocrine factors that impinge onto these signal transduction cascades. For example, 1,25(OH)2D3, a known repressor of 1 alpha-hydroxylation, may increase renal PKC amount-activity, thereby enhancing the inhibitory arm and preventing PTH stimulation of the 1-OHASE. In contrast, studies with diabetic rats suggest that insulin may allow cAMP-mediated stimulation to override PKC-mediated inhibition of 1-OHASE activity. Analogous to models proposed for regulation of adrenal steroid hydroxylases, it is likely that regulation of renal vitamin D hydroxylation involves both acute (reversible phosphorylation) and chronic (modulation of gene expression) mechanisms. However, the molecular details of these regulatory mechanisms remain to be resolved.Keywords
This publication has 0 references indexed in Scilit: