Benzophenone semicarbazone protection strategy for synthesis of aza‐glycine containing aza‐peptides
- 1 January 2008
- journal article
- research article
- Published by Wiley in Peptide Science
- Vol. 90 (6) , 824-831
- https://doi.org/10.1002/bip.21103
Abstract
Aza-glycine has been incorporated into peptide mimics as a tool for studying the active conformation and characterizing structure-function relationships for activity. Side reactions, such as intramolecular cyclizations to form hydantoins and oxadiazalones, have, however, inhibited efforts to make activated aza-Gly residues in solution using carbamate protection. Herein, we describe efficient incorporation of aza-glycine into aza-peptides using diphenyl hydrazone protection. Hydrazone acylation with p-nitrobenzyl chloroformate provided the protected aza-Gly activated ester, which was used to acylate a set of amino ester and amino acids to provide aza-Gly-Xaa aza-dipeptide fragments for peptide synthesis. Removal of the hydrazone protection was performed under acidic conditions to provide the hydrochloride salt of the aza-Gly residue for subsequent elongation of the aza-peptide chain using standard coupling conditions. A proof of concept for the use of benzophenone protection has been established by the synthesis of an aza-peptide analog of a potent activator of caspase 9 in cancer cells. © 2008 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 90: 824–831, 2008. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.comKeywords
This publication has 38 references indexed in Scilit:
- The regioselective α-alkylation of the benzophenone imine of glycinamide, alaninamide, and related derivativesCanadian Journal of Chemistry, 2006
- The energetically favorable cis peptide bond for the azaglycine-containing peptide: For-AzGly-NH2 modelPhysical Chemistry Chemical Physics, 2001
- Conformational restrictions of biologically active peptides via amino acid side chain groupsLife Sciences, 1982
- Polypeptides. Part 16. Synthesis and biological activity of α-aza-analogues of luliberin with high antagonist activityJournal of the Chemical Society, Perkin Transactions 1, 1979
- Polypeptides. Part 15. Synthesis and biological activity of α-aza-analogues of luliberin modified in positions 6 and 10Journal of the Chemical Society, Perkin Transactions 1, 1979
- Potent agonist and antagonist analogues of luliberin containing an azaglycine residue in position 10Biochemical and Biophysical Research Communications, 1978
- Hydrazinverbindungen als Heterobestandteile in Peptiden. XVI. Synthese von 9‐Hydrazinoessigsäure‐, 9‐Azaglycin‐ und 5‐α‐Azaasparagin‐OxytocinJournal für Praktische Chemie, 1972
- Hydrazinverbindungen als Heterobestandteile in Peptiden. XIII. Nα‐Acylierung von Hydrazinoessigsäure‐Derivaten und Synthese von Eledoisin‐Octapeptiden mit Nα‐acetylierter Hydrazinoessigsäure anstelle von Asparagin und GlycinJournal für Praktische Chemie, 1972
- Hydrazinverbindungen als Heterobestandteile in Peptiden. XV. Synthese von Eledoisin‐Octapeptiden mit den Carbazylresten Azaglycin und α‐Azaasparagin statt Glycin und AsparaginJournal für Praktische Chemie, 1972
- N- [2-Isopropyl-3-(L-aspartyl-L-arginyl)-carbazoyl]-L- tyrosyl-L-valyl-L-histidyl-L-prolyl-L-phenylalanine,1 an Isostere of Bovine Angiotensin IIJournal of the American Chemical Society, 1963