Reduced scale National Ignition Facility capsule design

Abstract
In this article we describe the design and simulated performance characteristics of an indirectly-driven inertial confinement fusion capsule which utilizes only 900 kJ of laser energy and 250 TW of laser power from the National Ignition Facility (NIF) [Paisner et al., Laser Focus World 30, 75 (1994)]. This intentional reduction in laser performance from the nominal NIF specifications of 1.8 MJ and 500 TW results in lowering the hohlraum x-ray drive temperature from 300 eV to 250 eV. These energy and radiation temperature reductions are believed to define a “lower bound” on the successful implosion of an ignition capsule. This reduced scale capsule has a beryllium ablator containing a radially varying copper dopant, and a cryogenic solid deuterium–tritium fuel layer surrounding a cavity filled with equilibrium vapor pressure gaseous deuterium and tritium. Two-dimensional simulations predict ignition and propagated burn from this capsule when either Rayleigh–Taylor instability or time-dependent drive asymmetry effects are included.