Pulsed laser deposition of thin superconducting films of Ho1Ba2Cu3O7x and Y1Ba2Cu3O7 − x

Abstract
Thin films of Ho1Ba2Cu3O7 − x and Y1Ba2Cu3O7 − x were deposited on SrTiO3 and Al2O3, substrates by pulsed laser deposition of high-Tc bulk superconductor pellets in vacuum. Following annealing in O2 at 800–900 °C the films were superconducting with typical Tc (50%) = 89 K and transition widths of 10 K. Rutherford backscattering spectrometry (RBS) and secondary ion mass spectrometry (SIMS) were utilized to study the stoichiometry of the as-deposited films for laser energy, densities between 0.11 and 4.5 J cm−2. The films were deficient in holmium and yttrium for energy densities below 0.6 and 0.4 J cm −2, respectively. The films were stoichiometric for fluences above 0.6 J cm−2. In addition, preliminary time dependence and spectroscopic observations of the laser-produced plasma are presented. The results indicate an ablation mechanism that at high energy densities preserves stoichiometry. TEM and x-ray characterization of annealed, superconducting Ho1Ba2Cu3O7 − x films on (100) SrTiO3 showed mixed regions of epitaxially oriented 1:2:3 material with either the c axis or a axis oriented along the surface normal. The a-axis-oriented material grew preferentially in the films with b, c, twinning.