Fractures induced by shock in quartz and feldspar
- 1 December 1979
- journal article
- Published by Mineralogical Society in Mineralogical Magazine
- Vol. 43 (328) , 527-533
- https://doi.org/10.1180/minmag.1979.043.328.13
Abstract
Summary: This study is devoted to fractures produced by natural and artificial shock processes in non-porous rocks consisting essentially of quartz and feldspar. Petrological and textural investigations were performed using optical and scanning electron microscopic techniques. A microfracturation index is adapted from Short (1966, 1968a, b) in order to compare the fracture densities in different materials shocked in different ways. In all cases, the density of fractures in quartz and feldspar increases with increasing pressure to about 200 kb. At higher pressure this trend is reversed. Fracturing is more intense in feldspar than in quartz. Plane shock waves produced in laboratory scale experiments induce more fracturing than natural shock waves. However, such an increase is no larger than the scatter among the data and the experimental technique used in the laboratory can be considered realistic in terms of fracturing. Finally the correlation between pressure and fracture density is too poor to be of use for quantitative pressure calibrations of naturally shocked materials.There is no direct correlation between the density of fractures and the number of planar elements observed. There is a negative correlation between fracturing and formation of diaplectic glass, Diaplectic glasses are remarkably weakly fractured compared with shocked minerals. The abrupt change in the slope of the curve giving the dependency of the density of fractures with pressure corresponds to the pressure at which diaplectic glass is formed. From petrographic considerations it is deduced that fracturing occurs at the end of the shock sequence, on pressure release, while diaplectic glasses are forming or already formed. Hypotheses of mechanical and thermal fracturing are examined; both are plausible, but a thermal origin may be preferred. The mechanism of formation of diaplectic glass is discussed with respect to results and deductions obtained by the study of fracturing. Diaplectic glass could represent a decompressed highdensity glass resulting from a single state transformation of a mineral, at high pressure.Keywords
This publication has 7 references indexed in Scilit:
- PROCESSES OCCURRING IN SHOCK WAVE COMPRESSION OF ROCKS AND MINERALSPublished by Elsevier ,1977
- dynamic unloading in shock compressed feldsparGeophysical Research Letters, 1976
- Structural and mineralogical evaluation of an experimentally produced impact crater in graniteContributions to Mineralogy and Petrology, 1969
- Shock induced planar deformation structures in quartz from the Ries crater, GermanyContributions to Mineralogy and Petrology, 1969
- Effects of shock pressures from a nuclear explosion on mechanical and optical properties of granodioriteJournal of Geophysical Research, 1966
- The structure of explosively shocked MgO crystalsPhilosophical Magazine, 1965
- Stishovite: Synthesis by Shock WaveScience, 1965