Abstract
The aim of this paper is to give, using the Kripke semantics for intuitionism, a representation of finitely generated free Heyting algebras. By means of the representation we determine in a constructive way some set of “special elements” of such algebras. Furthermore, we show that many algebraic properties which are satisfied by the free algebra on one generator are not satisfied by free algebras on more than one generator.

This publication has 4 references indexed in Scilit: