Effective utilization of quantum-cascade distributed-feedback lasers in absorption spectroscopy

Abstract
A variable duty cycle quasi-cw frequency scanning technique was applied to reduce thermal effects resulting from the high heat dissipation of type I quantum-cascade lasers. This technique was combined with a 100-m path-length multipass cell and a zero-air background-subtraction technique to enhance detection sensitivity to a parts-in-109 (ppb) concentration level for spectroscopic trace-gas detection of CH4, N2O, H2O, and C2H5OH in ambient air at 7.9 µm. A new technique for analysis of dense high-resolution absorption spectra was applied to detection of ethanol in ambient air, yielding a 125-ppb detection limit.