The large scale inhomogeneity of the galaxy distribution
Abstract
The determination of the properties of the galaxy distribution at large scales is accomplished using statistics which are assumed to be self-averaging inside a given sample. We present a new analysis able to quantitatively map galaxy large scale structures while testing for the stability of average statistical quantities in different sample regions. We find that the newest samples of the Sloan Digital Sky Survey provide unambiguous evidence that galaxy structures correspond to large amplitude density fluctuations at all scales limited only by sample sizes. The two-point correlations properties are self-averaging up to approximately 30 Mpc/h and are characterized by a fractal dimension D=2.1\pm 0.1. Then at all larger scales probed density fluctuations are too large in amplitude and too extended in space to be self-averaging inside the considered volumes. These inhomogeneities are compatible with a continuation of fractal correlations but incompatible with a homogeneity scale smaller than 100 Mpc/h and with the predictions of standard theoretical models and of gravitationally modeled mock galaxy catalogs.Keywords
All Related Versions
This publication has 0 references indexed in Scilit: