Incorporating 4D Seismic Data in Reservoir Simulation Models Using Ensemble Kalman Filter

Abstract
Summary: A method based on the ensemble Kalman filter (EnKF) for continuous model updating with respect to the combination of production data and 4D seismic data is presented. When the seismic data are given as a difference between two surveys, a combination of the ensemble Kalman filter and the ensemble Kalman smoother has to be applied. Also, special care has to be taken because of the large amount of data assimilated. Still, the method is completely recursive, with little additional cost compared to the traditional EnKF. The model system consists of a commercial reservoir simulator coupled with a rock physics and seismic modeling software. Both static variables (porosity, permeability, and rock physic parameters) and dynamic variables (saturations and pressures) may be updated continuously with time based on the information contained in the assimilated measurements. The method is applied to a synthetic model and a real field case from the North Sea. In both cases, the 4D seismic data are different variations of inverted seismic. For the synthetic case, it is shown that the introduction of seismic data gives a much better estimate of reservoir permeability. For the field case, the introduction of seismic data gives a very different permeability field than using only production data, while retaining the production match.