Biodegradation of an Alicyclic Hydrocarbon by a Sulfate-Reducing Enrichment from a Gas Condensate-Contaminated Aquifer
Open Access
- 1 January 2003
- journal article
- Published by American Society for Microbiology in Applied and Environmental Microbiology
- Vol. 69 (1) , 434-443
- https://doi.org/10.1128/aem.69.1.434-443.2003
Abstract
We used ethylcyclopentane (ECP) as a model alicyclic hydrocarbon and investigated its metabolism by a sulfate-reducing bacterial enrichment obtained from a gas condensate-contaminated aquifer. The enrichment coupled the consumption of ECP with the stoichiometrically expected amount of sulfate reduced. During ECP biodegradation, we observed the transient accumulation of metabolite peaks by gas chromatography-mass spectrometry, three of which had identical mass spectrometry profiles. Mass-spectral similarities to analogous authentic standards allowed us to identify these metabolites as ethylcyclopentylsuccinic acids, ethylcyclopentylpropionic acid, ethylcyclopentylcarboxylic acid, and ethylsuccinic acid. Based on these findings, we propose a pathway for the degradation of this alicyclic hydrocarbon. Furthermore, a putative metabolite similar to ethylcyclopentylsuccinic acid was also found in samples of contaminated groundwater from the aquifer. However, no such finding was evident for samples collected from wells located upgradient of the gas condensate spill. Microbial community analysis of the ECP-degrading enrichment by denaturing gradient gel electrophoresis revealed the presence of at least three different organisms using universal eubacterial primers targeting 550 bp of the 16S rRNA gene. Based on sequence analysis, these organisms are phylogenetically related to the genera Syntrophobacter and Desulfotomaculum as well as a member of the Cytophaga-Flexibacter-Bacteroides group. The evidence suggests that alicyclic hydrocarbons such as ECP can be anaerobically activated by the addition to the double bond of fumarate to form alkylsuccinate derivatives under sulfate-reducing conditions and that the reaction occurs in the laboratory and in hydrocarbon-impacted environments.Keywords
This publication has 30 references indexed in Scilit:
- Metabolism of Benzoate, Cyclohex-1-ene Carboxylate, and Cyclohexane Carboxylate by “ Syntrophus aciditrophicus ” Strain SB in Syntrophic Association with H 2 -Using MicroorganismsApplied and Environmental Microbiology, 2001
- Anaerobic Initial Reaction of n -Alkanes in a Denitrifying Bacterium: Evidence for (1-Methylpentyl)succinate as Initial Product and for Involvement of an Organic Radical in n -Hexane MetabolismJournal of Bacteriology, 2001
- Anaerobic Naphthalene Degradation by a Sulfate-Reducing Enrichment CultureApplied and Environmental Microbiology, 2000
- Intrinsic Bioremediation of Petroleum Hydrocarbons in a Gas Condensate-Contaminated AquiferEnvironmental Science & Technology, 1999
- Anaerobic Biodegradation of Long-Chain n-Alkanes under Sulfate-Reducing ConditionsEnvironmental Science & Technology, 1998
- Anaerobic Degradation of Benzene in Diverse Anoxic EnvironmentsEnvironmental Science & Technology, 1997
- Evidence That Anaerobic Oxidation of Toluene in the Denitrifying Bacterium Thauera aromatica is Initiated by Formation of Benzylsuccinate from Toluene and FumarateEuropean Journal of Biochemistry, 1996
- Pure culture and cytological properties of ‘Syntriphobacter wolini’FEMS Microbiology Letters, 1994
- Pathway of propionate degradation inDesulfobulbus propionicusFEMS Microbiology Letters, 1988
- Electron impact‐induced rearrangement of trimethylsilyl groups in long chain compoundsJournal of Mass Spectrometry, 1968