Nonhuman cells correctly sort and process the human lysosomal enzyme cathepsin D

Abstract
Cathepsin D, like most lysosomal enzyme, undergoes multiple proteolytic cleavages during its lifetime. Although the significance of the earliest cleavages of cathepsin D is apparent (loss of the NH2-terminal signal peptide and activation peptide), functions of the two later cleavages are not understood and do not occur in all species. To examine these later events, a cDNA coding for human cathepsin D, which is normally processed to a two-chain form, was isolated and then expressed in mammalian cells from species which do not process the enzyme to the two-chain form. Analysis of the expressed human cathepsin D demonstrated proteolytic processing identical with that seen in normal human fibroblasts. Since processing to the two-chain form of the enzyme occurs in the lysosome, these studies revealed that the human cathepsin D was correctly sorted. The data also indicated that the sorting mechanism was conserved between diverse species and that late proteolytic processing in a variety of species was not determined by the presence or absence of the processing enzymes in the cell.