Abstract
Two high-MW forms of cathepsin B have been described previously, both of which are stable at alkaline pH, in contrast with the lysosomal proteinase. One form is latent and activated by pepsin treatment; the other form is active as measured with synthetic substrates. In the present study it was shown that the two forms are indistinguishable on the basis of molecular size as determined by gel-filtration chromatography or sodium dodecyl sulphate/polyacrylamide-gel electrophoresis followed by immunoblotting. Both forms lose their alkali-stability upon exposure to Hg2+, and after Hg2+ treatment the latent form becomes immune-precipitable by an antiserum that reacts only with denatured cathepsin B. Lysosomal cathepsin B is bound by the plasma proteinase inhibitor .alpha.2-macroglobulin, a process that requires proteolytic cleavage of the inhibitor. In contrast, the stable active form of cathepsin B is not bound by this inhibitor unless this enzyme is first destabilized by Hg2+ treatment. These results indicate that cathepsin B exists in three different states of activity, completely latent, partially active and fully proteolytically active. To exhibit true endopeptidase activity it seems that the enzyme must be in an alkali-unstable form.